		n shows an interaction between a proton and a negative kaon that results in of particle, $\boldsymbol{X}.$	the
		$K^- + p \rightarrow K^+ + K^0 + X$	
(a)	(i)	State and explain whether X is a charged particle.	
			(2)
	(ii)	State and explain whether $old X$ is a lepton, baryon or meson.	
	(11)		
			(2)
	(iii)	State the quark structure of the $K^{\scriptscriptstyle -},K^{\scriptscriptstyle +}$ and the $K^{\scriptscriptstyle 0}.$	
		K	
		K ⁺	
		K ⁰	(3)
	(iv)	Strangeness is conserved in the interaction.	
		Determine, explaining your answer, the quark structure of \boldsymbol{X} .	
		(Total	(3) 10 marks)

Q2.(a)	Baryons,	mesons and	leptons are	affected I	by	particle interactions.
------	----	----------	------------	-------------	------------	----	------------------------

Write an account of these interactions. Your account should:

- include the names of the interactions
- identify the groups of particles that are affected by the interaction
- identify the exchange particles involved in the interaction
- give examples of **two** of the interactions you mention.

The quality of your written communication will be assessed in your answer.

(b) Draw a labelled diagram that represents a particle interaction.

(Total 9 marks)

(6)

Q3.(a) Complete the following equation for beta minus (β^-) decay of \$90 strontium-90 (38 Sr) into an isotope of yttrium (Y).

$${}^{90}_{38}Sr \longrightarrow {}^{\cdots\cdots}_{\cdots\cdots}Y + {}^{\cdots\cdots}_{\cdots}\beta^- + {}^0_0\cdots\cdots$$

(3)

leca	ositive kaon consists of an up quark and an antistrange quark $(u \overline{s})$. This kaon ays by strong and weak interactions into three pions. Two of the pions have k compositions of $(u \overline{d})$. The third pion has a different quark composition.
)	Name the unique family of particles to which the kaon and pions belong.
ii)	Tick the box corresponding to the charge of the third pion.
	positive negative neutral
iii)	Positive kaons have unusually long lifetimes.
	Give a reason why you would expect this to be the case.
iv)	Name the exchange particles which are involved in the strong and weak
	interactions of the kaon.
	strong interaction

Q4.(a) Complete the table comparing some of the properties of the positive pion, $\pi^{,}$ and the proton.

Name	$\pi^{\scriptscriptstyle +}$	Proton
Relative charge	+1	
Baryon number		
Quark composition		

(5)

(b) When a positive pion interacts with a proton, a kaon can be produced, along with another strange particle, as shown in this equation

$$\pi^{\scriptscriptstyle +} + p \longrightarrow K^{\scriptscriptstyle +} + X$$

Circle the type of interaction shown in this equation.

Electromagnetic Gravitational Strong Nuclear Weak Nuclear

(1)

(c) Deduce the relative charge, baryon number and strangeness of particle $\boldsymbol{X}.$

(3)

(d) Particle X can decay to produce a neutron and positive pion as shown in this equation

$$X \rightarrow n + \pi^+$$

Circle the type of interaction shown in this equation.

Electromagnetic		Gravitational	Strong Nuclear	Weak Nuclear			
					(1)		
(e)	Explain your answer.						
					(2)		
(f)			n decay. The positive pio	n can decay into a			
	•	electron neutrino. equation for the decay	of the neutron.				
					(2)		
(g)	Explain why no	further decays occur.					
					(2)		
				(Total 16 r	narks)		